Linear Motion
Newton's Laws and Conservation Laws
Elastic Collision in 1D
The coefficient of restitution is \(\(e = \frac{v_{2f} - v_{1f}}{v_{1i} - v_{2i}}\) \)
When \(e = 1\) , the collision is perfectly elastic collision .
When \(0 \le e \lt 1\) , the collision is inelastic collision .
When \(e = 0\) , the collision is perfectly inelastic collision .
In the perfectly elastic collision,
\[
\begin{gathered}
v_{1f} = \frac{m_1-m_2}{m_1+m_2} v_{1i} + \frac{2m_2}{m_1+m_2} v_{2i} = 2v_{CM} - v_{1i} \\\\
v_{2f} = \frac{2m_1}{m_1+m_2} v_{1i} + \frac{m_2 - m_1}{m_1+m_2} v_{2i} = 2v_{CM} - v_{2i}
\end{gathered}
\]
When \(m_1 >> m_2\) , we can get \(v_{1f} = v_{1i}\) , \(v_{2f} = 2v_{1i} - v_{2i}\) .
When \(m_1 = m_2\) , we can get \(v_{1f} = v_{2i}\) , \(v_{2f} = v_{1i}\) .
Elastic Collision in 2D
\[
\begin{cases}
m_1v_{1f}\cos\theta + m_2v_{2f}\cos\phi = m_1v_{1i} \\
m_1v_{1f}\sin\theta - m_2v_{2f}\sin\phi = 0 \\
\displaystyle \frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2
\end{cases}
\]
When \(m_1 = m_2\) and \(v_{2i} = 0\) , we can get \(\boldsymbol{v}_{1f} \cdot \boldsymbol{v}_{2f} = 0\)
Center of Mass
\[x_\text{CM} = \lim_{\Delta m_i \rightarrow 0} \frac{\sum x_i \Delta m_i}{M} = \frac{1}{M} \int x dm\]
\[\boldsymbol{r}_\text{CM} = \frac{\sum m_i \boldsymbol{r}_i}{M}\]
\[\boldsymbol{v}_\text{CM} = \frac{\sum m_i \boldsymbol{v}_i}{M}\]
\[\boldsymbol{a}_\text{CM} = \frac{\sum m_i \boldsymbol{a}_i}{M}\]
\[\boldsymbol{p}_\text{CM} = \sum m_i\boldsymbol{v}_i = M\boldsymbol{v}_\text{CM}\]
The kinetic energy of a system is equal to the kinetic energy of its center of mass plus its kinetic energy in the CM frame.
\[
\begin{aligned}
E_k &= \sum \frac{1}{2} m_i (v_i' + v_\text{CM})(v_i' + v_\text{CM}) \\
&= \sum \frac{1}{2} m_i v_\text{CM}^2 + \sum m_i v_i' v_\text{CM} + \sum \frac{1}{2} m_i v_i'^2 \\
&= \frac{1}{2} v_\text{CM}^2 \sum m_i + \sum \frac{1}{2} m_i v_i'^2 + v_\text{CM} \sum m_i v_i' \\
&= \frac{1}{2} v_\text{CM}^2 M + \sum \frac{1}{2} m_i v_i'^2 + v_\text{CM}\frac{d}{dt} \sum m_i r_i' \\
&= E_{Kcm} + E_k'
\end{aligned}
\]
Perfectly Elastic Collision in CM Frame
\[
\begin{gathered}
v_{1i}' = v_{1i} - v_\text{CM} = \frac{m_2}{m_1+m_2} (v_{1i} - v_{2i}) \\\\
v_{2i}' = v_{2i} - v_\text{CM} = \frac{m_1}{m_1+m_2} (v_{2i} - v_{1i}) \\\\
v_{1f}' = -v_{1i}' \\\\
v_{2f}' = -v_{2i}'
\end{gathered}
\]
Perfectly inelastic scattering in CM Frame
\[
\begin{gathered}
v_{1i}' = v_{1i} - v_\text{CM} = \frac{m_2}{m_1+m_2} (v_{1i} - v_{2i}) \\\\
v_{2i}' = v_{2i} - v_\text{CM} = \frac{m_1}{m_1+m_2} (v_{2i} - v_{1i}) \\\\
v_{1f}' = v_{2f}' = 0
\end{gathered}
\]
Gravitation
The Law of Gravitation
The law of gravitation is \(\(F = G \frac{Mm}{R^2}\) \)
So the period at an circular orbit is
\[
\begin{gathered}
\frac{GM}{R^2} = \omega^2 R = \frac{4\pi^2}{T^2}R \\\\
\Rightarrow \frac{T^2}{R^3} = \frac{4\pi^2}{GM} \\\\
\Rightarrow T = 2\pi\sqrt{\frac{R^3}{GM}}
\end{gathered}
\]
And the corresponding speed is
\[
\begin{gathered}
\frac{GM}{r^2} = \frac{v^2}{r} \\\\
\Rightarrow v = \sqrt{\frac{GM}{r}}
\end{gathered}
\]
Then we can get the energy of the satellite \(\(E = \frac{1}{2}mv^2 - \frac{GMm}{r} = -\frac{GMm}{2r}\) \)
Rocket Propulsion
The first cosmic speed is \(v_1 = \sqrt{\frac{GM}{R}}\) .
The second cosmic speed is \(v_1 = \sqrt{\frac{2GM}{R}}\) .
Let \(m\) be the mass of the ejected medium in an instant, \(v_e\) the speed of the medium relative to the rocket, then we can get
\[
\begin{gathered}
M dv = v_e dm = -v_e dM \\\\
\Rightarrow dv = -v_e \frac{dM}{M} \\\\
\Rightarrow v_f - v_i = v_e \ln \frac{M_i}{M_f}
\end{gathered}
\]
Plus, taking the gravity into consideration, we can get
\[
\begin{gathered}
Ma = -v_e \frac{dM}{M} - gt \\\\
\Rightarrow adt = v_e \frac{dM}{M} - gdt \\\\
\Rightarrow v = v_e \ln(\frac{M_0}{M}) - gt
\end{gathered}
\]