EM Waves and Light Wave
EM Waves and Light Wave¶
Electromagnetic Wave Spectrum¶
- Visible Light: 400nm ~ 700nm
- Infrared: 0.7um ~ 1mm
- Microwave: 1mm ~ 1m
- Radio: 1m ~ 100km
- Ultraviolet: 10nm ~ 400nm
- X-ray: 0.01nm ~ 10nm
- Gamma Ray: < 0.01nm
The Properties Of Electromagnetic Wave¶
- \(E \perp H\)
- \(E\) and \(H\) are in phase
- The direction of propagation is parallel to \(E \times H\), obey Right-Hand rule
- The speed of electromagnetic wave is \(v = \dfrac{1}{\sqrt{\kappa_e\epsilon_0\kappa_m\mu_0}}\)
The Energy Flux Density of Electromagnetic Wave¶
The rate of the electromagnetic energy changing is \(\(\frac{dU}{dt} = \frac{d}{dt} \iiint \left( \frac{1}{2} \vec{D} \bullet \vec{E} + \frac{1}{2} \vec{B} \bullet \vec{H} \right) dv\)\)
Beacuse
So
For the latter term, we have
For the former term, we introduce Poynting Vector \(\vec{S} = \vec{E} \times \vec{H}\). Then we have the Electromagnetic Energy Flux: \(\(\frac{dU}{dt} = - \oiint \vec{S} \bullet d\vec{A} - Q + P\)\)
Define \(Z_0 = \mu_0c = 377 \Omega\), then we have \(\(S = \frac{EB}{\mu_0} = \frac{E^2}{\mu_0c} = \frac{E^2}{Z_0}\)\)
Then the Intensity of a wave (\(W/m^2\)) is \(\(I = \left< S \right> = \frac{\left< E^2 \right>}{Z_0} = \frac{1}{2} \frac{E^2_{\max}}{377 \Omega} = \frac{E^2_{\text{rms}}}{377 \Omega}\)\)
We can also define the Intensity of a wave as average energy density times wave velocity \(\(I = c\left< u \right> = c\epsilon_0 \left< E^2 \right> = c\epsilon_0 E^2_{\text{rms}} = \frac{E^2_{\text{rms}}}{\mu_0c}\)\)
Momentum and Pressure of Radiation¶
For the force on the area \(\Delta A\) metal plate
So the pressure of radiation is \(\(P = \frac{|\Delta F|}{\Delta A} = \frac{1}{c} (|\vec{S}_{in}| + |\vec{S}_{out}|)\)\)
For white body (reflectivity 100%), we have \(P = \dfrac{2}{c} |\vec{S}_{in}| = \dfrac{2}{c} I\).
For black body (reflectivity 0%), we have \(P = \dfrac{1}{c} |\vec{S}_{in}| = \dfrac{1}{c} I\).
The change of momentum of EMW is
So the momentum density of EMW is \(\(\vec{g} = \frac{1}{c^2} \vec{S} = \frac{1}{c^2} (\vec{E} \times \vec{H})\)\)
The Doppler effect for light wave¶
The Dopper effect for light wave is \(\(f = f_0 \frac{\sqrt{1 - \dfrac{u^2}{c^2}}}{1 + \dfrac{u}{c} \cos\theta}\)\)
where \(f_0\) is measured in the frame the source is fixed
At \(\theta = \pi/2\), the light traveling perpendicular to the relative motion of the frames, \(\(f = f_0 \sqrt{1 - \frac{u^2}{c^2}}\)\)
At \(\theta = 0\), the source is leaving (redshift), \(\(f = f_0 \sqrt{\frac{1 - u/c}{1 + u/c}}\)\)
At \(\theta = \pi\), the source is approaching (blueshift), \(\(f = f_0 \sqrt{\frac{1 + u/c}{1 - u/c}}\)\)
Shorthands¶
- Electromagnetic Energy Flux
- Intensity of a wave
- Pressure of radiation
- Redshift is leaving or approaching?