Maxwell's Equation
Maxwell's Equation
The Basic Equations of Electromagnetisms
In vacuum, we have
\[
\begin{cases}
\oiint \vec{E} \bullet d\vec{A} = \dfrac{q_0}{\epsilon_0} \\
\oiint \vec{B} \bullet d\vec{A} = 0 \\
\oint \vec{E} \bullet d\vec{l} = - \dfrac{d\Phi_B}{dt} = - \iint \dfrac{\partial \vec{B}}{\partial t} \bullet d\vec{A} \\
\oint \vec{B} \bullet d\vec{l} = \mu_0 i
\end{cases}
\]
In the dielectric and magnetic materials,
\[
\begin{gathered}
\begin{cases}
\oiint \vec{D} \bullet d\vec{A} = q_0 \\
\oiint \vec{B} \bullet d\vec{A} = 0 \\
\oint \vec{E} \bullet d\vec{l} = - \iint \dfrac{\partial \vec{B}}{\partial t} \bullet d\vec{A} \\
\oint \vec{H} \bullet d\vec{l} = i_0 = \iint \vec{j}_0 \bullet d\vec{A}
\end{cases}
\Rightarrow
\begin{cases}
\nabla \bullet \vec{D} = \rho_0 \\
\nabla \bullet \vec{B} = 0 \\
\nabla \times \vec{E} = - \dfrac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{H} = \vec{j}_0
\end{cases}
\end{gathered}
\]
where \(\vec{D} = \epsilon_0 \vec{E} + \vec{P}\) , \(\vec{H} = \dfrac{\vec{B}}{\mu_0} - \vec{M}\) , \(\epsilon_0 = 8.85\times 10^{-12} F/m\) , \(\mu_0 = 4\pi\times 10^{-7} N/A^2\) .
Induced Magnetic Field and the Displacement current
To make \(\oint \vec{H} \bullet d\vec{l}\) same for different surfaces, we need to introduce displacement current \(i_D\) in the region between the plates, equal to the current in the wire. Then we have \(\(\oint \vec{H} \bullet d\vec{l} = i_0 + i_D\) \)
Because
\[
\begin{gathered}
\Phi_D = \iint \vec{D} \bullet d\vec{A} \\\\
i_D = \frac{d\Phi_D}{dt} = \iint \frac{\partial \vec{D}}{\partial t} \bullet d\vec{A} \\\\
\vec{j}_D = \frac{\partial \vec{D}}{\partial t}
\end{gathered}
\]
Now we have the New Ampere’s Loop Law \(\(\oint \vec{H} \bullet d\vec{l} = \iint (\vec{j}_0 + \frac{\partial \vec{D}}{\partial t}) \bullet d\vec{A} = i_0 + \iint \frac{\partial \vec{D}}{\partial t} \bullet d\vec{A}\) \)
So the changing electric field will generate induced magnetic field.
For a enclosed surface, we have
\[
\begin{gathered}
\begin{cases}
\oiint \vec{j}_0 \bullet d\vec{A} = - \dfrac{dq_0}{dt} \\
\oiint \vec{D} \bullet d\vec{A} = q_0
\end{cases} \\\\
\Rightarrow \oiint \vec{j}_0 \bullet d\vec{A} = - \oiint \frac{\partial \vec{D}}{\partial t} \bullet d\vec{A} \\\\
\Rightarrow \oiint (\vec{j}_0 + \frac{\partial \vec{D}}{\partial t}) \bullet d\vec{A} = 0
\end{gathered}
\]
Maxwell’s Equations
\[
\begin{gathered}
\begin{cases}
\oiint \vec{D} \bullet d\vec{A} = q_0 \\
\oiint \vec{B} \bullet d\vec{A} = 0 \\
\oint \vec{E} \bullet d\vec{l} = - \iint \dfrac{\partial \vec{B}}{\partial t} \bullet d\vec{A} \\
\oint \vec{H} \bullet d\vec{l} = i_0 + \iint \dfrac{\partial \vec{D}}{\partial t} \bullet d\vec{A}
\end{cases}
\Rightarrow
\begin{cases}
\nabla \bullet \vec{D} = \rho_{e_0} \\
\nabla \bullet \vec{B} = 0 \\
\nabla \times \vec{E} = - \dfrac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{H} = \vec{j}_0 + \dfrac{\partial \vec{D}}{\partial t}
\end{cases}
\end{gathered}
\]