跳转至

Interference

Interference

Steady Wave

There are two forms of steady wave. One is steady vecter wave, like the EM wave:

\[ \begin{cases} \vec{E}(P, t) = \vec{E}_0(P) \cos (\omega t - \phi(P)) \\ \vec{H}(P, t) = \vec{H}_0(P) \cos (\omega t - \phi(P)) \end{cases} \]

The other is steady scalar wave:

\[ \begin{gathered} U(P, t) = A(P) \cos (\omega t - \phi(P)) \\\\ \tilde{U}(P, t) = A(P) e^{i(\phi(P) - \omega t)} = A(P) e^{i\phi(P)} e^{-i\omega t} \\\\ \tilde{U}(P) = A(P) e^{i\phi(P)} \end{gathered} \]

For steady plane wave, we have

\[ \begin{gathered} \begin{cases} A(P) = \text{constant} \\ \phi(P) = \vec{k} \bullet \vec{r} = k_x x + k_y y + k_z z + \phi_0 \end{cases} \\\\ \tilde{U}(P) = A e^{i\phi(P)} = A e^{i(\vec{k} \bullet \vec{r} + \phi_0)} = A e^{i(k_x x + k_y y + k_z z + \phi_0)} \end{gathered} \]

For steady spherical wave, we have

\[ \begin{gathered} \begin{cases} A(P) = \dfrac{a}{r} \\ \phi(P) = kr + \phi_0 \end{cases} \\\\ \tilde{U}(P) = \frac{a}{r} e^{i(kr + \phi_0)} \end{gathered} \]

The wave intensity is \(\(I(P) = [A(P)]^2 = \tilde{U}^*(P) \cdot \tilde{U}(P)\)\)


Wave Superposition and Interference

The wave superposition principle is that, for scalar wave, the resultant wave is the sum of all the waves; For vector wave, the resultant wave is the vector sum of all the waves.

When two waves interfere, the intensity of the resultant wave is

\[ \begin{aligned} I(P, t) &= \tilde{U}^*(P, t) \cdot \tilde{U}(P, t) \\ &= \left( A_1 e^{-i\phi_1} e^{i\omega_1 t} + A_2 e^{-i\phi_2} e^{i\omega_2 t} \right) \left( A_1 e^{i\phi_1} e^{-i\omega_1 t} + A_2 e^{i\phi_2} e^{-i\omega_2 t} \right) \\ &= A_1^2 + A_2^2 + 2A_1A_2 \cos [(\phi_1 - \phi_2) - (\omega_1 - \omega_2)t] \\ &= I_1 + I_2 + 2\sqrt{I_1I_2} \cos [(\phi_1 - \phi_2) - (\omega_1 - \omega_2)t] \end{aligned} \]

So if \(\delta(P) = \phi_1 - \phi_2\) is not steady, or \(\omega_1 \neq \omega_2\), no interference will occur. If \(\delta\) changes with time, we call it incohrent.

For two spherical plane waves, if \(\phi_1 = \phi_2\), then \(\(\delta(P) = \frac{2\pi}{\lambda} (r_1 - r_2)\)\)

If \(\Delta L = r_1 - r_2 = m\lambda\), \(I(P)\) is maximum; If \(\Delta L = r_1 - r_2 = (m + \dfrac{1}{2})\lambda\), \(I(P)\) is minimum.


Young’s Double Slit Quantitative

In Young’s double slit expriment, we have \(\(\Delta L = d\sin\theta, \quad \sin\theta = \frac{y}{L}\)\)

So constructive interference happens at \(y = \dfrac{m\lambda L}{d}\).

Destructive interference happens at \(y = \dfrac{(m + \dfrac{1}{2})\lambda L}{d}\).


Thin Film Interference

If \(n_1 > n_2\), no phase change upon reflection.

If \(n_1 < n_2\), phase change of \(180^{\circ}\) upon reflection, equivalent to the wave shifting by \(\lambda/2\).

If the thickness is the same at every point, fringes of equal inclination will appear:

\[ \begin{aligned} \Delta L &= (ARC) - (AB) \\ &= n \frac{2h}{\cos i} - n_1 \cdot 2h\tan i \cdot \sin i_1 \\ &= 2h (\frac{n}{\cos i} - \frac{n_1\sin i_1 \sin i}{\cos i}) \\ &= 2nh (\frac{1}{\cos i} - \frac{\sin^2 i}{\cos i}) \\ &= 2nh\cos i \end{aligned} \]

Consider the half-wave loss, \(\Delta L = 2nh\cos i + \lambda/2\).

\[ \cos i_{m+1} - \cos i_m = -\sin i (i_{m+1} - i_m) = \frac{\lambda}{2nh} \\\\ \Delta r_m = r_{m+1} - r_m = f(i_{m+1} - i_m) = - \frac{f\lambda}{2nh\sin i_m} \]

So the fringes of equal inclination are internally sparse and externally dense. Moreover, \(n\) or \(h\) is bigger, \(\Delta r\) is smaller.


If the thickness is not the same at every point, fringes of equal thickness will appear. The difference of optical path is:

\[ \begin{aligned} \Delta L &= (QABP) - (QP) \\ &= (QA) - (QP) + (ABP) \\ &= -n AP \sin i + 2(AB) \\ &= -n \cdot (2h\tan i) \cdot \sin i + \frac{2nh}{\cos i} \\ &= 2nh (\frac{1}{\cos i} - \frac{\sin^2 i}{\cos i}) \\ &= 2nh \cos i \end{aligned} \]

For the air film, the gap between fringes is \(\(\Delta x = \frac{\Delta h}{\tan\theta} = \frac{\lambda}{2\theta}\)\)

For the Newton's ring, the radis of its minimum fringes is

\[ h_m = R - \sqrt{R^2 - r_m^2} \approx \frac{1}{2} \frac{r_m^2}{R} = \frac{1}{2} m\lambda \\\\ \Rightarrow r_m = \sqrt{m\lambda R} \]

It can be seen that the fringes of the Newton's ring are also internally sparse and externally dense.