跳转至

Electricity Charge and Field

Electric Charge

There are three kinds of charge density: - Linear charge density: \(\lambda = dq/dx\) - Surface charge density: \(\sigma = dq/dA\) - Volume charge density: \(\rho = dq/dV\)


The force between a point charge and a ring of charge is \(\(F_z = \frac{1}{4\pi \epsilon_0} \frac{q_0qz}{(z^2 + R^2)^{3/2}}\)\)

When \(z \rightarrow +\infty\), \(F_z = \dfrac{1}{4\pi \epsilon_0} \dfrac{q_0q}{z^2}\).

The force between a point charge and a disk of charge is

\[ \begin{aligned} F_z &= \int_0^R \frac{1}{4\pi \epsilon_0} \frac{q_0 (2\pi \omega d \omega \cdot \sigma)}{z^2 + R^2} \frac{z}{\sqrt{z^2 + R^2}} \\ &= \frac{1}{4\pi \epsilon_0} q_0 2\pi\sigma z \int_0^R \frac{\omega d\omega}{(z^2 + \omega^2)^{2/3}} \\ &= \frac{1}{4\pi \epsilon_0} \cdot q_0 \frac{2\pi R^2 \sigma}{R^2} \cdot \left. \frac{z}{\sqrt{z^2 + \omega^2}} \right|_R^0 \\ &= \frac{1}{4\pi \epsilon_0} \frac{2q_0q}{R^2} \left( 1 - \frac{z}{\sqrt{z^2 + R^2}} \right) \\ &= \frac{\sigma q_0}{2\epsilon_0} \left( 1 - \frac{1}{\sqrt{1 + (R/z)^2}} \right) \end{aligned} \]

When \(R \rightarrow +\infty\), \(F_z = \dfrac{\sigma q_0}{2\epsilon_0}\).


Electric Field

The electric field generated by an infinite line of charge is

\[ \begin{gathered} dE = \frac{1}{4\pi \epsilon_0} \frac{\lambda dx}{(r / \cos\theta)^2} \\\\ x = r \tan\theta \Rightarrow dx = r \sec^2 \theta d\theta \\\\ E_y = \int_{-\pi/2}^{\pi/2} \frac{1}{4\pi \epsilon_0} \frac{\lambda d\theta}{r} \cos\theta = \frac{\lambda}{2\pi \epsilon_0 r} \end{gathered} \]

The electric field generated by an electric dipole is

\[ \begin{gathered} E_x(r, 0) = 0 \\\\ E_y(r, 0) = -\frac{1}{4\pi \epsilon_0} \frac{2Qa}{(r^2 + a^2)^{3/2}} \\\\ E_x(0, r) = 0 \\\\ E_y(0, r) = \frac{Q}{4\pi \epsilon_0} \left[ \frac{1}{(r-a)^2} - \frac{1}{(r+a)^2} \right] = \frac{1}{4\pi \epsilon_0} \frac{4Qa}{r^3 (1 - a^2/r^2)^2} \\ \end{gathered} \]

We can set \(p = 2Qa = Ql\), where \(l\) is the distance between the two charges. When \(r >> a\), we have \(E_y(r, 0) = -\dfrac{1}{4\pi \epsilon_0} \dfrac{p}{r^3}, E_y(0, r) = \dfrac{1}{4\pi \epsilon_0} \dfrac{2p}{r^3}\)

The torque of a dipole in a uniform electric field is \(\tau = p \times E\).

The work done by the electric dipole moment in a uniform electric field is \(W = \int_{\theta_0}^{\theta} \tau d\theta = -\int_{\theta_0}^{\theta} pE\sin\theta d\theta = pE(\cos\theta - \cos\theta_0)\). So \(U = - \vec{p} \bullet \vec{E}\).


Gauss Law

The Gauss Law is: \(\(\Phi_E = \oiint E \cdot dA = \frac{q}{\epsilon_0}\)\)

By this, we can get the electric field inside sphere:

\[ \begin{gathered} q = \frac{4}{3}\pi r^3\rho \\\\ E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} = \frac{\rho r}{3\epsilon_0} = \frac{Qr}{4\pi\epsilon_0R^3} \end{gathered} \]

The outer electric field for a charged conductor is:

\[ \begin{gathered} \epsilon_0 \oiint E \cdot dA = \epsilon_0 E \Delta A = \sigma \cdot \Delta A \\\\ \Rightarrow E = \frac{\sigma}{\epsilon_0} \end{gathered} \]

The electric field for a infinite sheet of charge is: \(\(E = \frac{\sigma}{2\epsilon_0}\)\)

The electric field for a infinite line of charge is: \(\(E = \frac{\lambda \cdot l}{\epsilon_0 \cdot 2\pi rl} = \frac{\lambda}{2\pi\epsilon_0 r}\)\)


By the Gauss Law, we can get \(\(\rho = \epsilon_0 \nabla \cdot \vec{E}\)\)

In spherical coordinates, \(\(\nabla \cdot \vec{E} = \frac{1}{r^2} \frac{\partial r^2 E_r}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial \sin\theta E_{\theta}}{\partial \theta} + \frac{1}{r\sin\theta} \frac{\partial E_{\phi}}{\partial \phi}\)\)

In cylindrical coordinates, \(\(\nabla \cdot \vec{E} = \frac{1}{r} \frac{\partial r E_r}{\partial r} + \frac{1}{r} \frac{\partial E_{\theta}}{\partial \theta} + \frac{\partial E_{z}}{\partial z}\)\)


Shorthand

  • Force between a point charge and a ring of charge
  • Force between a point charge and a disk of charge
  • Electric field generated by an infinite plane of charge
  • Electric field generated by an infinite line of charge
  • Electric field generated by an electric dipole
  • Electric field inside sphere (Gauss Law)
  • Electric field for a charged conductor (Gauss Law)
  • Torque of a dipole in a uniform electric field
  • Energy of a dipole in a uniform electric field
  • Volume charge density from electric field