Faraday's Law
Faraday's Law¶
Faraday's Law of Induction and Lenz's Law¶
Define the flux of the magnetic field through an open surface as: \(\(\Phi_B = \iint B \bullet dA\)\)
Faraday's Law: The electromotive force (emf) induced in a circuit is \(\(\epsilon = - \frac{d\Phi_B}{dt}\)\)
The minus sign is given by Lenz's Law. The induced current will appear in such a direction that it opposes the change in flux that produced it.
For generator,
\[
\begin{gathered}
\Phi_B = BA\cos\theta = BA\cos\omega t \\\\
\Rightarrow \epsilon = BA\omega \sin\omega t
\end{gathered}
\]
Motional emf and Induced emf¶
For motional emf, we have \(\(\epsilon = \int_{-}^{+} K \bullet dl = \int_C^D (\vec{v} \times \vec{B}) \bullet dl\)\)
For induced emf, we have
\[
\epsilon = \oint \vec{E} \bullet d\vec{l} = \oint (\vec{E}_{std} + \vec{E}_{ind}) \bullet d\vec{l}
\]
\[
\Rightarrow \nabla \times \vec{E} =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
E_x & E_y & E_z \\
\end{vmatrix}
= - \frac{\partial \vec{B}}{\partial t}
\]
In spherical coordinates,
\[
\nabla \times \vec{E} = \frac{1}{r^2\sin\theta}
\begin{vmatrix}
\hat{r} & r\hat{\theta} & r\sin\theta\hat{\phi} \\
\frac{\partial }{\partial r} & \frac{\partial }{\partial \theta} & \frac{\partial }{\partial \phi} \\
E_r & r E_{\theta} & r\sin\theta E_{\phi} \\
\end{vmatrix}
\]
In cylindrical coordinates,
\[
\nabla \times \vec{E} = \frac{1}{r}
\begin{vmatrix}
\hat{r} & r\hat{\theta} & \hat{z} \\
\frac{\partial }{\partial r} & \frac{\partial }{\partial \theta} & \frac{\partial }{\partial z} \\
E_r & r E_{\theta} & E_{z} \\
\end{vmatrix}
\]